
iot-ledmatrix Documentation
Release 0.1

enra64, gSilas

Apr 22, 2017





Contents:

1 Custom scripts 1

2 Canvas class 5

3 Configuration options 9

4 Raspberry pi (host) code 11

5 android code 13

6 arduino sketch 15

Python Module Index 17

i



ii



CHAPTER 1

Custom scripts

Custom scripts are what makes iot-ledmatrix powerful. You can add any gimmick you want by adding an implemen-
tation to one of the subfolders of scripts.

Scripts beginning with _ will not be displayed in the app to be manually loaded. Only a custom fragment can load
them, because they can only run properly with that custom fragment. Scripts not beginning with _ can be loaded by
the user in a default fragment that lists them. Other than that, new custom scripts do not need any configuration effort.

When your new script is requested in the app, it will be loaded and can draw to the led matrix.

How to draw from within the script

Drawing to the matrix is done by using the functions of the canvas supplied with the draw calls. Detailed documenta-
tion is available here: Canvas class

Creating a new script

Custom scripts must contain a class that is exactly the name of the source file minus the .py.

For example, if you create a “flashlight” script, the file name would be flashlight.py, and the class name would
be flashlight.

For debugging, a simple GUI was implemented. Use the --enable-gui flag to display it.

The class must inherit from CustomScript, which is documented here:

CustomScript class

class CustomScript.CustomScript(canvas, send_object, send_object_to_all, start_script, restart_self,
set_frame_period, set_frame_rate, get_connected_clients)

The CustomScript class is the class you want to inherit from to implement a new matrix mode.

1



iot-ledmatrix Documentation, Release 0.1

In addition to the constructor, there are six methods that will be called by the manager:

• update(), where the state may be updated

• draw(), where the matrix content may be drawn

• on_data(), called when messages from clients arrive

• exit(), last call before the instance is discarded

• on_client_connected(), called with an id parameter when a new client is approved

• on_client_disconnected(), called with an id parameter when a client has disconnected

They have default implementations, so you only need to override them if you need to do anything.

A few methods can also be called by the script itself (self.<function_name>(<param1...>)):

• send_object() to send objects to specific clients

• send_object_to_all() to send objects to all clients

• start_script() start a script by name. will replace current script.

• restart_self() restarts the current script

• get_connected_clients() gets a list of approved client ids

• set_frame_period() allows to set a custom update cycle period in seconds

• set_frame_rate() allows to set a custom update cycle calling rate in Hz

All of these functions are documented more detailed in their method documentations.

Script Lifecycle

The constructor will always be called first. Do your initialization here. Update will always be called before
draw. The two functions are called in a loop, and will repeatedly execute. exit is always the last method call.

See the method documentations for further information.

draw(canvas: Canvas.Canvas)
Called after update. Make any modifications of the canvas you want to do here. After this method has
finished executing, the canvas buffer will be sent to the arduino and displayed.

Parameters canvas – the canvas you can draw on. will be displayed on the arduino

Returns nothing

exit()
Called when the manager gracefully wants to stop this script. This instance will be discarded of after.

get_connected_clients()
Get a list of connected clients. The list will only contain the ids as given by zmq, which may be used to
send data to clients. To send data to all clients, use send_object_to_all.

Returns list of zmq ids.

on_client_connected(id)
Called when a client connects

Parameters id – id of the client that disconnected

Returns

on_client_disconnected(id)
Called when a client disconnects

Parameters id – id of the client that disconnected

2 Chapter 1. Custom scripts



iot-ledmatrix Documentation, Release 0.1

Returns

on_data(data_dictionary, source_id)
Called whenever the android app sends data for the script.

Parameters

• data_dictionary – a dictionary of data received from the android app.

• source_id – the network id of the sending android device

Returns nothing

restart_self()
Will restart the current script. exit() will be called on this instance. A new instance will be created. No
additional arguments can be given.

Returns nothing

send_object(obj, target)
Send an object to the target id. The object can be anything, but a dict is probably easiest. No JSON
serialization needs to be performed by you.

Parameters

• obj – the object to be sent

• target – target id of the client

Returns nothing

send_object_to_all(obj)
Send an object to all connected clients. TThe object can be anything, but a dict is probably easiest. No
JSON serialization needs to be performed by you.

Parameters obj – the object to be sent

Returns nothing

set_frame_period(period)
Change the frame period with which the script will be updated

Parameters period – the target frame period. resulting frame rate must be 0 <= f <= 60, in
Hz

Returns nothing

set_frame_rate(frame_rate)
Change the frame rate with which the script will be updated

Parameters frame_rate – the target frame rate. must be 0 <= f <= 60, in Hz

Returns nothing

start_script(script_name, source_id)
Will load the class in the scripts/ folder that has the given name in the file with the same name.

Parameters

• script_name – the name of _both_ the script and the class implementing the callback
functions

• source_id – the id of the client requesting the script to be loaded

update(canvas)
Called before draw. Do any updating you want to do here.

1.3. CustomScript class 3



iot-ledmatrix Documentation, Release 0.1

Parameters canvas – canvas object for information like width and height

4 Chapter 1. Custom scripts



CHAPTER 2

Canvas class

class Canvas.Canvas(width, height)
A canvas makes it easy to display using the matrix by providing a translation layer between pixels on a cartesian
coordinate system and color data readable by the arduino and the WS2812B RGB leds.

The canvas uses colors from the colour library to represent the requested colors. See https://github.com/vaab/
colour

The user functions are:

•draw_pixel(x, y, color)

•draw_line(x_start, y_start, x_end, y_end, color)

•draw_rect(x, y, width, height, color)

•draw_text(x, y, text, color, ignore_height_warning=False)

•set_font(path, size)

•clear(color)

clear(color: colour.Color = <Color black>)
Set all pixels to some color

Parameters color – the color that should be applied

draw_line(x_start: int, y_start: int, x_end: int, y_end: int, color: colour.Color)
An implementation of bresenhams line drawing algorithm. Draws a line from <x_start, y_start> to <x_end,
y_end> in the given color.

Parameters

• x_start – x position where the line should start

• y_start – y position where the line should end

• x_end – x position where the line should start

• y_end – y position where the line should end

• color – color the line should be drawn in

5

https://github.com/vaab/colour
https://github.com/vaab/colour


iot-ledmatrix Documentation, Release 0.1

Returns nothing

draw_pixel(x: int, y: int, color: colour.Color)
Set a pixel to a color. Most basic canvas function.

Parameters

• x – x position of pixel; counted from zero beginning on the left, must be smaller than the
canvas width

• y – y position of pixel; y is zero for the top row of pixels, must be smaller than the canvas
height

• color – the description of the color that should be set

draw_rect(x: int, y: int, width: int, height: int, color: colour.Color)

Parameters

• x – x position of pixel; counted from zero beginning on the left, must be smaller than the
canvas width

• y – y position of pixel; y is zero for the top row of pixels, must be smaller than the canvas
height

• width – how wide the rectangle should be.

• height – how high the rectangle should be

• color – the color the rectangle should have

Returns nothing

draw_text(text: str, x: int, y: int, color: colour.Color, ignore_height_warning=False)
Draw text on the canvas. Rendering over the borders is cut off, so you do not need boundary checking.

Parameters

• text – the text to be rendered

• x – the top-left starting position of the text

• y – the top-left starting position of the text

• color – color of the text

• ignore_height_warning – if true, no warning will be logged that the font does not
fit into the available height. if false, a warning will be printed in the log on each such
occasion

Returns nothing

get_buffer_for_arduino()→ bytearray
This method can be used to retrieve the internal data buffer. Modifications will probably do weird shit.
Mostly useful for pushing the data out to the arduino, who actually understands what all the numbers mean.

Returns a bytearray with all color values

get_color(x, y)→ colour.Color
Get a Color instance describing the color of the led at x,y

Parameters

• x – x position of pixel; counted from zero beginning on the left, must be smaller than the
canvas width

6 Chapter 2. Canvas class



iot-ledmatrix Documentation, Release 0.1

• y – y position of pixel; y is zero for the top row of pixels, must be smaller than the canvas
height

Returns a Color instance

get_pixel_index(x, y)
Convert a cartesian coordinate for an led into the index that represents red for that led in the buffer.

Currently, the chaining is assumed to be in a zig-zag, as follows:

col0 col1 col2 col3 col4 col5 col6 col7 col8 col9
row0 99 98 97 96 95 94 93 92 91 90
row1 80 81 82 83 84 85 86 87 88 89
row2 79 78 77 76 75 74 73 72 71 70
row3 60 61 62 63 64 65 66 67 68 69
row4 59 58 57 56 55 54 53 52 51 50
row5 40 41 42 43 44 45 46 47 48 49
row6 39 38 37 36 35 34 33 32 31 30
row7 20 21 22 23 24 25 26 27 28 29
row8 19 18 17 16 15 14 13 12 11 10
row9 0 1 2 3 4 5 6 7 8 9

Parameters

• x – x coordinate of the led in the matrix (counted left-to-right)

• y – y coordinate of the led in the matrix (counted top-to-bottom)

Returns index of the red value of that led (g, b, are +1, +2 of that position respectively) in the
buffer

get_red_index(x, y)
Pretty much like get_pixel_index, but this function returns the position of the red value of the given led in
the byte buffer.

Parameters

• x – x coordinate of led in cartesian system

• y – y coordinate of led in cartesian system

Returns position of “red” in the background buffer

set_font(path: str, size: int)
Load a font to be used for rendering all following text. (see draw_text)

Parameters

• path – path to the font

• size – size of the font. For a 10x10 matrix, 13 is an acceptable, if rather large, choice.

Returns nothing

7



iot-ledmatrix Documentation, Release 0.1

8 Chapter 2. Canvas class



CHAPTER 3

Configuration options

All configuration options are command-line arguments. The script will change its working directory to the main.py
location.

--test-with-serial run only tests testing serial connection
--test run all tests but those requiring an arduino + leds
→˓be connected
--set-arduino-port= set the port the arduino is connected on manually,
→˓like /dev/ttyUSB0
--name= set the name the ledmatrix will advertise itself as
--width= set the horizontal number of leds
--height= set the vertical number of leds
--data-port= set the data port the ledmatrix server will use
--discovery-port= set the discovery port the led matrix discovery
→˓server will use
--loglevel= set python logging loglevel
--disable-arduino-connection disable arduino connection. mostly useful for
→˓debugging without an arduino
--errors-to-console divert errors to console instead of logfile
--logfile= set log file location. best to use absolute paths.
--start-script= set starting script, defaults to 'gameoflife'
--enable-gui enable a simplistic gui displaying what the matrix
→˓should currently show. combine with --disable-arduino-connection for easy testing.
→˓will fuck up stopping. recommended for debugging only

iot-ledmatrix is a code base produced to use a diy rgb led matrix made from WS2812B leds. The code was written by
enra64 and gSilas.

The code consists of three parts:

• the python code used on the raspberry pi inside the matrix

• the android code making up the control app

• the arduino code required to talk to the leds

This documentation is mostly concerned with the python code used on the rpi, since at the moment the other code is
only written by enra64.

9

https://www.github.com/gSilas


iot-ledmatrix Documentation, Release 0.1

10 Chapter 3. Configuration options



CHAPTER 4

Raspberry pi (host) code

The raspberry pi code is responsible for pushing the correct colors to the arduino, and also constitutes the bridge
between the matrix, the internet and an optional android phone.

custom scripts

Custom scripts enable you to easily create new features for the matrix. They are discussed in detail here: Custom
scripts

11



iot-ledmatrix Documentation, Release 0.1

12 Chapter 4. Raspberry pi (host) code



CHAPTER 5

android code

The android app included in client-android makes working with the matrix really easy. It supports some administration
features, and it is the basis for interactive scripts.

administration

Users can reboot the raspberry pi, shut it down or simply restart the host code. A log viewer is also implemented, so
failures can be quickly debugged.

host script fragments

Programmers can write Fragments that display an arbitrary user interface to implement any required custom function-
ality. Two-Way communication with the matrix is available.

13



iot-ledmatrix Documentation, Release 0.1

14 Chapter 5. android code



CHAPTER 6

arduino sketch

The arduino code is simple, but NUM_LEDS_CURRENT must be set before uploading the code. The arduino will
partake in a simple handshake to confirm correct initialization. After that, the arduino writes all received data into the
led buffer. Whenever enough bytes for a single frame have arrived, the leds will show the new data.

15



iot-ledmatrix Documentation, Release 0.1

16 Chapter 6. arduino sketch



Python Module Index

c
Canvas, 5
CustomScript, 1

17



iot-ledmatrix Documentation, Release 0.1

18 Python Module Index



Index

C
Canvas (class in Canvas), 5
Canvas (module), 5
clear() (Canvas.Canvas method), 5
CustomScript (class in CustomScript), 1
CustomScript (module), 1

D
draw() (CustomScript.CustomScript method), 2
draw_line() (Canvas.Canvas method), 5
draw_pixel() (Canvas.Canvas method), 6
draw_rect() (Canvas.Canvas method), 6
draw_text() (Canvas.Canvas method), 6

E
exit() (CustomScript.CustomScript method), 2

G
get_buffer_for_arduino() (Canvas.Canvas method), 6
get_color() (Canvas.Canvas method), 6
get_connected_clients() (CustomScript.CustomScript

method), 2
get_pixel_index() (Canvas.Canvas method), 7
get_red_index() (Canvas.Canvas method), 7

O
on_client_connected() (CustomScript.CustomScript

method), 2
on_client_disconnected() (CustomScript.CustomScript

method), 2
on_data() (CustomScript.CustomScript method), 3

R
restart_self() (CustomScript.CustomScript method), 3

S
send_object() (CustomScript.CustomScript method), 3
send_object_to_all() (CustomScript.CustomScript

method), 3

set_font() (Canvas.Canvas method), 7
set_frame_period() (CustomScript.CustomScript

method), 3
set_frame_rate() (CustomScript.CustomScript method), 3
start_script() (CustomScript.CustomScript method), 3

U
update() (CustomScript.CustomScript method), 3

19


	Custom scripts
	Canvas class
	Configuration options
	Raspberry pi (host) code
	android code
	arduino sketch
	Python Module Index

