

Welcome to iot-ledmatrix’s documentation!

Contents:

	Custom scripts

	Canvas class

	Configuration options

iot-ledmatrix is a code base produced to use a diy rgb led matrix made from WS2812B leds.
The code was written by enra64 and gSilas [https://www.github.com/gSilas].

The code consists of three parts:

	the python code used on the raspberry pi inside the matrix

	the android code making up the control app

	the arduino code required to talk to the leds

This documentation is mostly concerned with the python code used on the rpi, since at the moment the other code
is only written by enra64.

Raspberry pi (host) code

The raspberry pi code is responsible for pushing the correct colors to the arduino,
and also constitutes the bridge between the matrix, the internet and an optional android phone.

custom scripts

Custom scripts enable you to easily create new features for the matrix. They are discussed in detail here: Custom scripts

android code

The android app included in client-android makes working with the matrix really easy. It supports some administration features, and it is the basis for interactive scripts.

administration

Users can reboot the raspberry pi, shut it down or simply restart the host code. A log viewer is also implemented, so failures can be quickly debugged.

host script fragments

Programmers can write Fragments that display an arbitrary user interface to implement any required custom functionality.
Two-Way communication with the matrix is available.

arduino sketch

The arduino code is simple, but NUM_LEDS_CURRENT must be set before uploading the code.
The arduino will partake in a simple handshake to confirm correct initialization.
After that, the arduino writes all received data into the led buffer.
Whenever enough bytes for a single frame have arrived, the leds will show the new data.

Custom scripts

Custom scripts are what makes iot-ledmatrix powerful.
You can add any gimmick you want by adding an implementation to one of the subfolders of scripts.

Scripts beginning with _ will not be displayed in the app to be manually loaded. Only a custom fragment can load them,
because they can only run properly with that custom fragment. Scripts not beginning with _ can be loaded by the
user in a default fragment that lists them.
Other than that, new custom scripts do not need any configuration effort.

When your new script is requested in the app, it will be loaded and can draw to the led matrix.

How to draw from within the script

Drawing to the matrix is done by using the functions of the canvas supplied with the draw calls. Detailed
documentation is available here: Canvas class

Creating a new script

Custom scripts must contain a class that is exactly the name of the source file minus the .py.

For example, if you create a “flashlight” script, the file name would be flashlight.py, and the class name would be flashlight.

For debugging, a simple GUI was implemented. Use the --enable-gui flag to display it.

The class must inherit from CustomScript, which is documented here:

CustomScript class

	
class CustomScript.CustomScript(canvas, send_object, send_object_to_all, start_script, restart_self, set_frame_period, set_frame_rate, get_connected_clients)

	The CustomScript class is the class you want to inherit from to implement a new matrix mode.

	In addition to the constructor, there are six methods that will be called by the manager:

	
	update(), where the state may be updated

	draw(), where the matrix content may be drawn

	on_data(), called when messages from clients arrive

	exit(), last call before the instance is discarded

	on_client_connected(), called with an id parameter when a new client is approved

	on_client_disconnected(), called with an id parameter when a client has disconnected

They have default implementations, so you only need to override them if you need to do anything.

	A few methods can also be called by the script itself (self.<function_name>(<param1...>)):

	
	send_object() to send objects to specific clients

	send_object_to_all() to send objects to all clients

	start_script() start a script by name. will replace current script.

	restart_self() restarts the current script

	get_connected_clients() gets a list of approved client ids

	set_frame_period() allows to set a custom update cycle period in seconds

	set_frame_rate() allows to set a custom update cycle calling rate in Hz

All of these functions are documented more detailed in their method documentations.

Script Lifecycle

The constructor will always be called first. Do your initialization here.
Update will always be called before draw. The two functions are called in a loop, and will repeatedly execute.
exit is always the last method call.

See the method documentations for further information.

	
draw(canvas: Canvas.Canvas)

	Called after update. Make any modifications of the canvas you want to do here. After this method has finished
executing, the canvas buffer will be sent to the arduino and displayed.

	Parameters:	canvas – the canvas you can draw on. will be displayed on the arduino

	Returns:	nothing

	
exit()

	Called when the manager gracefully wants to stop this script. This instance will be discarded of after.

	
get_connected_clients()

	Get a list of connected clients. The list will only contain the ids as given by zmq, which may
be used to send data to clients. To send data to all clients, use send_object_to_all.

	Returns:	list of zmq ids.

	
on_client_connected(id)

	Called when a client connects

	Parameters:	id – id of the client that disconnected

	Returns:	

	
on_client_disconnected(id)

	Called when a client disconnects

	Parameters:	id – id of the client that disconnected

	Returns:	

	
on_data(data_dictionary, source_id)

	Called whenever the android app sends data for the script.

	Parameters:	
	data_dictionary – a dictionary of data received from the android app.

	source_id – the network id of the sending android device

	Returns:	nothing

	
restart_self()

	Will restart the current script. exit() will be called on this instance. A new instance will be
created. No additional arguments can be given.

	Returns:	nothing

	
send_object(obj, target)

	Send an object to the target id. The object can be anything, but a dict is probably easiest.
No JSON serialization needs to be performed by you.

	Parameters:	
	obj – the object to be sent

	target – target id of the client

	Returns:	nothing

	
send_object_to_all(obj)

	Send an object to all connected clients. TThe object can be anything, but a dict is probably easiest.
No JSON serialization needs to be performed by you.

	Parameters:	obj – the object to be sent

	Returns:	nothing

	
set_frame_period(period)

	Change the frame period with which the script will be updated

	Parameters:	period – the target frame period. resulting frame rate must be 0 <= f <= 60, in Hz

	Returns:	nothing

	
set_frame_rate(frame_rate)

	Change the frame rate with which the script will be updated

	Parameters:	frame_rate – the target frame rate. must be 0 <= f <= 60, in Hz

	Returns:	nothing

	
start_script(script_name, source_id)

	Will load the class in the scripts/ folder that has the given name in the file with the same name.

	Parameters:	
	script_name – the name of _both_ the script and the class implementing the callback functions

	source_id – the id of the client requesting the script to be loaded

	
update(canvas)

	Called before draw. Do any updating you want to do here.

	Parameters:	canvas – canvas object for information like width and height

Canvas class

	
class Canvas.Canvas(width, height)

	A canvas makes it easy to display using the matrix by providing a translation layer between pixels on a cartesian
coordinate system and color data readable by the arduino and the WS2812B RGB leds.

The canvas uses colors from the colour library to represent the requested colors. See https://github.com/vaab/colour

The user functions are:

	draw_pixel(x, y, color)

	draw_line(x_start, y_start, x_end, y_end, color)

	draw_rect(x, y, width, height, color)

	draw_text(x, y, text, color, ignore_height_warning=False)

	set_font(path, size)

	clear(color)

	
clear(color: colour.Color = <Color black>)

	Set all pixels to some color

	Parameters:	color – the color that should be applied

	
draw_line(x_start: int, y_start: int, x_end: int, y_end: int, color: colour.Color)

	An implementation of bresenhams line drawing algorithm. Draws a line from <x_start, y_start> to <x_end, y_end>
in the given color.

	Parameters:	
	x_start – x position where the line should start

	y_start – y position where the line should end

	x_end – x position where the line should start

	y_end – y position where the line should end

	color – color the line should be drawn in

	Returns:	nothing

	
draw_pixel(x: int, y: int, color: colour.Color)

	Set a pixel to a color. Most basic canvas function.

	Parameters:	
	x – x position of pixel; counted from zero beginning on the left, must be smaller than the canvas width

	y – y position of pixel; y is zero for the top row of pixels, must be smaller than the canvas height

	color – the description of the color that should be set

	
draw_rect(x: int, y: int, width: int, height: int, color: colour.Color)

	

	Parameters:	
	x – x position of pixel; counted from zero beginning on the left, must be smaller than the canvas width

	y – y position of pixel; y is zero for the top row of pixels, must be smaller than the canvas height

	width – how wide the rectangle should be.

	height – how high the rectangle should be

	color – the color the rectangle should have

	Returns:	nothing

	
draw_text(text: str, x: int, y: int, color: colour.Color, ignore_height_warning=False)

	Draw text on the canvas. Rendering over the borders is cut off, so you do not need boundary checking.

	Parameters:	
	text – the text to be rendered

	x – the top-left starting position of the text

	y – the top-left starting position of the text

	color – color of the text

	ignore_height_warning – if true, no warning will be logged that the font does not fit into the available
height. if false, a warning will be printed in the log on each such occasion

	Returns:	nothing

	
get_buffer_for_arduino() → bytearray

	This method can be used to retrieve the internal data buffer. Modifications will probably do weird shit. Mostly
useful for pushing the data out to the arduino, who actually understands what all the numbers mean.

	Returns:	a bytearray with all color values

	
get_color(x, y) → colour.Color

	Get a Color instance describing the color of the led at x,y

	Parameters:	
	x – x position of pixel; counted from zero beginning on the left, must be smaller than the canvas width

	y – y position of pixel; y is zero for the top row of pixels, must be smaller than the canvas height

	Returns:	a Color instance

	
get_pixel_index(x, y)

	Convert a cartesian coordinate for an led into the index that represents red for that led in the buffer.

Currently, the chaining is assumed to be in a zig-zag, as follows:

	
	col0
	col1
	col2
	col3
	col4
	col5
	col6
	col7
	col8
	col9

	row0
	99
	98
	97
	96
	95
	94
	93
	92
	91
	90

	row1
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89

	row2
	79
	78
	77
	76
	75
	74
	73
	72
	71
	70

	row3
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69

	row4
	59
	58
	57
	56
	55
	54
	53
	52
	51
	50

	row5
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49

	row6
	39
	38
	37
	36
	35
	34
	33
	32
	31
	30

	row7
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29

	row8
	19
	18
	17
	16
	15
	14
	13
	12
	11
	10

	row9
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	Parameters:	
	x – x coordinate of the led in the matrix (counted left-to-right)

	y – y coordinate of the led in the matrix (counted top-to-bottom)

	Returns:	index of the red value of that led (g, b, are +1, +2 of that position respectively) in the buffer

	
get_red_index(x, y)

	Pretty much like get_pixel_index, but this function returns the position of the red value of the given led in the
byte buffer.

	Parameters:	
	x – x coordinate of led in cartesian system

	y – y coordinate of led in cartesian system

	Returns:	position of “red” in the background buffer

	
set_font(path: str, size: int)

	Load a font to be used for rendering all following text. (see draw_text)

	Parameters:	
	path – path to the font

	size – size of the font. For a 10x10 matrix, 13 is an acceptable, if rather large, choice.

	Returns:	nothing

Configuration options

All configuration options are command-line arguments. The script will change its working directory to the main.py location.

--test-with-serial run only tests testing serial connection
--test run all tests but those requiring an arduino + leds be connected
--set-arduino-port= set the port the arduino is connected on manually, like /dev/ttyUSB0
--name= set the name the ledmatrix will advertise itself as
--width= set the horizontal number of leds
--height= set the vertical number of leds
--data-port= set the data port the ledmatrix server will use
--discovery-port= set the discovery port the led matrix discovery server will use
--loglevel= set python logging loglevel
--disable-arduino-connection disable arduino connection. mostly useful for debugging without an arduino
--errors-to-console divert errors to console instead of logfile
--logfile= set log file location. best to use absolute paths.
--start-script= set starting script, defaults to 'gameoflife'
--enable-gui enable a simplistic gui displaying what the matrix should currently show. combine with --disable-arduino-connection for easy testing. will fuck up stopping. recommended for debugging only

 Python Module Index

 c

 		 	

 		
 c	

 	
 	
 Canvas	

 	
 	
 CustomScript	

Index

 C
 | D
 | E
 | G
 | O
 | R
 | S
 | U

C

 	
 	Canvas (class in Canvas)

 	(module)

 	
 	clear() (Canvas.Canvas method)

 	CustomScript (class in CustomScript)

 	(module)

D

 	
 	draw() (CustomScript.CustomScript method)

 	draw_line() (Canvas.Canvas method)

 	
 	draw_pixel() (Canvas.Canvas method)

 	draw_rect() (Canvas.Canvas method)

 	draw_text() (Canvas.Canvas method)

E

 	
 	exit() (CustomScript.CustomScript method)

G

 	
 	get_buffer_for_arduino() (Canvas.Canvas method)

 	get_color() (Canvas.Canvas method)

 	
 	get_connected_clients() (CustomScript.CustomScript method)

 	get_pixel_index() (Canvas.Canvas method)

 	get_red_index() (Canvas.Canvas method)

O

 	
 	on_client_connected() (CustomScript.CustomScript method)

 	
 	on_client_disconnected() (CustomScript.CustomScript method)

 	on_data() (CustomScript.CustomScript method)

R

 	
 	restart_self() (CustomScript.CustomScript method)

S

 	
 	send_object() (CustomScript.CustomScript method)

 	send_object_to_all() (CustomScript.CustomScript method)

 	set_font() (Canvas.Canvas method)

 	
 	set_frame_period() (CustomScript.CustomScript method)

 	set_frame_rate() (CustomScript.CustomScript method)

 	start_script() (CustomScript.CustomScript method)

U

 	
 	update() (CustomScript.CustomScript method)

 nav.xhtml

 Table of Contents

 		Welcome to iot-ledmatrix's documentation!

 		Custom scripts

 		How to draw from within the script

 		Creating a new script

 		CustomScript class

 		Canvas class

 		Configuration options

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

_static/down-pressed.png

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/minus.png

_static/file.png

